# Novel patient-derived xenograft models of acute leukemias



Antje Siegert<sup>1</sup>, Silke Burghardt<sup>1</sup>, Stephan Fuhrmann<sup>2</sup>, Clemens Schmitt<sup>3</sup>, Wolfgang Walther<sup>1</sup>, Jens Hoffmann<sup>1</sup>

<sup>1</sup>Experimental Pharmacology & Oncology GmbH, Berlin, Germany <sup>2</sup>Praxis für Hämatologie und Onkologie Berlin Mitte, Berlin, Germany <sup>3</sup>Charité, University Medicine Berlin and Kepler University Hospital, Dep. Hematology and Oncology, Linz, Austria



## **Background and Aim**

Acute leukemias (AML-acute myeloid leukemia or ALL-acute lymphoid leukemia) represent a distinct heterogeneous group of hematological malignancies. Most patients show different responses and have poor prognosis with standard of care (SoC) therapy. Acute leukemias are challenging for the development of new targeted therapies. Therefore, there is a demand for corresponding robust preclinical models capable of testing new therapies. Patient-derived xenograft (PDX) models in mice recapitulate a wide variety of clinical features of cancer and have been proven useful in drug development and evaluation of new therapies.

The aim of the project was establishment and characterization of new PDX models representing AML and ALL.

#### Clinical data of leukemias

| Tumor ID    | Classification | Age | Gender |  |  |  |
|-------------|----------------|-----|--------|--|--|--|
| AML 6252    | M4             | 58  | male   |  |  |  |
| AML 6256    | M5             | 3   | male   |  |  |  |
| AML 6799    | M1             | 14  | male   |  |  |  |
| AML11655    | M1             | 43  | male   |  |  |  |
| AML11810    | M5b            | 65  | male   |  |  |  |
| AML12680    | M4             | 62  | female |  |  |  |
| AML12683    | M4/M5          | 76  | female |  |  |  |
| AML13643    | M5             | 75  | male   |  |  |  |
| AML13990    | M5             | 56  | female |  |  |  |
| AML14636    | N/A            | 75  | male   |  |  |  |
| AML15117    | AML NOS        | 57  | female |  |  |  |
| AML16966    | MO             | 60  | female |  |  |  |
| AML18555    | M1             | 24  | male   |  |  |  |
| ALL-SCID 2  | c-ALL          | 16  | male   |  |  |  |
| ALL-SCID 3  | T-ALL          | 3   | male   |  |  |  |
| ALL-SCID 4  | T-ALL          | 15  | male   |  |  |  |
| ALL-SCID 5  | c-ALL          | 3   | male   |  |  |  |
| ALL-SCID 6  | T-ALL          | 3   | male   |  |  |  |
| ALL-SCID 7  | pre-B-ALL      | 2   | female |  |  |  |
| ALL-SCID 19 | pro-B-ALL      | 1   | male   |  |  |  |
| ALL11656    | c-ALL          | 45  | male   |  |  |  |





### Characteristics and drug response of AML PDX and ALL PDX

|             | 2                       |                   | Read out    |                               |                         | Drug response (T/C)  |              |               |           |         |             |              |
|-------------|-------------------------|-------------------|-------------|-------------------------------|-------------------------|----------------------|--------------|---------------|-----------|---------|-------------|--------------|
| PDX ID      | Transplantatio<br>route | Mutations         | Time (days) | Parameter                     | Cytosine<br>arabinoside | Cyclo<br>phosphamide | Daunorubicin | 5-Azacytidine | Sorafenib | ABT-199 | Vincristine | Asparaginase |
| AMI 6252    | S.C.                    | none              | 50          | tumor volume                  | 25*                     | 41*                  | 60           | N/A           | N/A       | N/A     | N/A         | N/A          |
|             | i.v.                    | Попе              | 30          | spleen weight, survival, FACS | 21*                     | N/A                  | 26*          | N/A           | N/A       | N/A     | N/A         | N/A          |
| AML 6256    | S.C.                    | none              | 45          | tumor volume                  | 53                      | 31                   | 51           | N/A           | N/A       | N/A     | N/A         | N/A          |
| AML 6799    | S.C.                    | N/A               | 50          | tumor volume                  | 21*                     | 0.1*                 | 91           | N/A           | N/A       | N/A     | N/A         | N/A          |
| AMI 11655   | S.C.                    | IDH2, NPM1,       | 60          | tumor volume                  | 8*                      | 20*                  | 53*          | 41*           | 18*       | N/A     | N/A         | N/A          |
| ANIL 11055  | i.v.                    | NRAS              | 80          | spleen weight, survival, FACS | 60*                     | 34*                  | N/A          | N/A           | 26*       | N/A     | N/A         | N/A          |
| AML11810    | S.C.                    | N/A               | 30          | tumor volume                  | 157                     | 4*                   | 81           | 41*           | 49*       | N/A     | N/A         | N/A          |
| AML12680    | S.C.                    | NRAS              | 35          | tumor volume                  | 69                      | 25*                  | 83           | N/A           | 41        | N/A     | N/A         | N/A          |
| AML12683    | S.C.                    | N/A               | 60          | tumor volume                  | 51                      | 0.1*                 | 56*          | 50*           | 39*       | N/A     | N/A         | N/A          |
| AML13643    | S.C.                    | none              | 35          | tumor volume                  | 96                      | 9*                   | 40*          | 84            | 80        | N/A     | N/A         | N/A          |
| AML13990    | S.C.                    | N/A               | 40          | tumor volume                  | 65                      | N/A                  | 57           | 63            | 87        | 30*     | N/A         | N/A          |
| AML14636    | S.C.                    | N/A               | 80          | tumor volume                  | 0.1*                    | 15*                  | N/A          | 8*            | 23*       | 26*     | N/A         | N/A          |
| AML15117    | S.C.                    | ASXL1,            | 70          | tumor volume                  | 2*                      | 54                   | N/A          | 63            | 55        | 19*     | N/A         | N/A          |
|             | i.v.                    | NRAS              | 60          | spleen weight, survival, FACS | N/A                     | 90                   | N/A          | 18*           | 51*       | 62*     | N/A         | N/A          |
| AML16966    | S.C.                    | none              | 25          | tumor volume                  | 85                      | 45*                  | N/A          | 97            | 81        | 76      | N/A         | N/A          |
| AML18555    | i.v.                    | N/A               | 140         | spleen weight, survival, FACS | 56*                     | 43*                  | N/A          | 32*           | 85        | 35*     | N/A         | N/A          |
| ALL-SCID 2  | i.v.                    | N/A               | 45          | spleen weight, survival, FACS | 136                     | 53                   | 38           | N/A           | N/A       | N/A     | N/A         | 109          |
| ALL-SCID 3  | i.p.                    | CEBPA             | 20          | tumor volume                  | N/A                     | N/A                  | 12*          | N/A           | N/A       | N/A     | 12*         | 89           |
| ALL-SCID 4  | s.c.                    | none              | 50          | tumor volume                  | N/A                     | 0.1                  | 2            | N/A           | N/A       | N/A     | N/A         | 1            |
| ALL-SCID 5  | s.c.                    | DNMT3A, IDH1      | 70          | tumor volume                  | 48                      | 30*                  | 45           | N/A           | N/A       | N/A     | 22          | 10           |
| ALL-SCID 6  | S.C.                    | IDH2, NPM1 4<br>6 | 40          | tumor volume                  | 1*                      | 36                   | 85           | N/A           | N/A       | N/A     | 19          | 57           |
|             | i.v.                    |                   | 60          | spleen weight                 | 16*                     | 64                   | 62           | N/A           | N/A       | N/A     | 59          | 77           |
| ALL-SCID 7  | i.v.                    | N/A               | 30          | spleen weight, survival, FACS | 95                      | 30*                  | 148          | N/A           | N/A       | N/A     | 44          | 75           |
| ALL-SCID 19 | s.c.                    | none              | 40          | tumor volume                  | 17*                     | 0.1*                 | 42*          | N/A           | N/A       | N/A     | 0.1*        | 0.1*         |
| ALL11656    | s.c.                    | DNMT3A,           | 60          | tumor volume                  | 2*                      | 0.1*                 | 54           | 11*           | 18*       | N/A     | N/A         | N/A          |
|             | i.v.                    | IDH2, RUNX1       | 55          | spleen weight, survival, FACS | 23*                     | 6*                   | N/A          | 77*           | 56*       | N/A     | N/A         | N/A          |

Table 1: Overview of clinical AML and ALL data



**Figure 1**: Schematic of PDX generation

# Examples of drug response in systemically and subcutaneously growing PDX



Table 2: Overview of established AML/ALL PDX, including clinically relevant mutations in leukemia (RNAseq analysis), in vivo growth features, read out parameters and drug response. PDX reveal a wide range of responses towards clinically relevant drugs (optimal T/C % values). N/A=not analysed, \*p<0.05 compared with control.





Figure 2: Examples of therapy response in AML11655 and ALL11656 PDX. Mice were treated starting either from palpable tumor size (s.c.-models) or three days after i.v. inoculation of tumor cells (i.v.-models). Response was comparable in s.c.- and i.v.-models.

Figure 3: Individual tumor growth of different PDX, including fast (appr. 20 days), medium (appr. 60 days) and slow (up to 90 days) growing tumors. Tumor fragments were subcutaneously transplanted at day 0. The width and length of the tumors were measured 2-3x/week.

# Monitoring of therapy effects in blood -adjuvant therapy setting in AML11655 i.v.



# Different read out parameters for drug response in AML15117i.v. PDX



Figure 4: Therapy response in AML15117i.v. Mice were sacrificed at first signs of final leukemia at day 47. Spleen weight was measured, while blood and spleen cell suspensions were analysed by flow cytometry for human CD45+ cells. The different read out parameters showed similar results.



#### Analyses between days 60-80:

- Leukemic cell load: hCD45 - Specific differentiation marker: e.g. hCD11b, hCD14, hCD15 - time to disease manifestation - spleen weight



**Figure 5:** Schematic of leukemia and therapy monitoring in blood

### **Summary of results**

→13 AML PDX were established, representing 7 various subtypes –1x M0, 3x M1, 2x M4, 1x M4/M5, 3x M5, 1x M5b, 1x NOS (table 1)

>> 8 ALL PDX of varied subtypes were established, 1x pre-ALL, 1x pro-ALL, 3x c-ALL, 3x T-ALL (table 1)

>> PDX panel includes models with clinically relevant mutations in acute leukemias like IDH1, IDH2, NPM1, NRAS, ASXL1, CEBPA, DNMT3A, RUNX1 (table 2)

>> PDX exhibit different in vivo growth kinetics in a range from 20 days to 80 days (**figure 3**)

>> PDX display heterogeneous response to SoC, reflecting the clinical situation (table 2)

Response to SoC was similar and independent from PDX growth type - systemically or subcutaneously (**figure 2**)

>> In systemically growing PDX, spleen weight correlated with flow cytometric analysis of human CD45 positive cells in blood and spleen (figure

#### Conclusion

The established PDX models of AML and ALL represent suitable tools for preclinical drug development. They provide an exceptional platform for the identification and validation of new targets, while allowing screening of new compounds and testing of new therapies, including immuno-oncological and cell therapies.

